HINSS The leading health information and technology conference WHERE THE WORLD CONNECTS FOR HEALTH

Conference & Exhibition | March 5–9, 2018 Las Vegas | Venetian – Palazzo – Sands Expo Center

Going From the Trail to the Summit in Precision Medicine

Precision Medicine Preconference Symposia, Las Vegas Venetian – Palazzo 4400, 3:15pm – 4:15pm *March 5, 2018* **Steven N. Kalkanis, MD** Medical Director, Henry Ford Cancer Institute

COMMITMENT

www.himssconference.org

DISCLAIMER: The views and opinions expressed in this presentation are those of the author and do not necessarily represent official policy or position of HIMSS.

Going From the Trail to the Summit in Precision Medicine

HIMSS18 Precision Medicine Symposium March 5, 2018 Las Vegas, Nevada

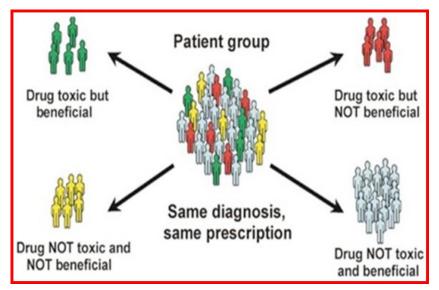
Steven N. Kalkanis, MD

Medical Director, Henry Ford Cancer Institute Chair, Department of Neurosurgery Henry Ford Health System

Conflict of Interest

Steven Kalkanis, MD

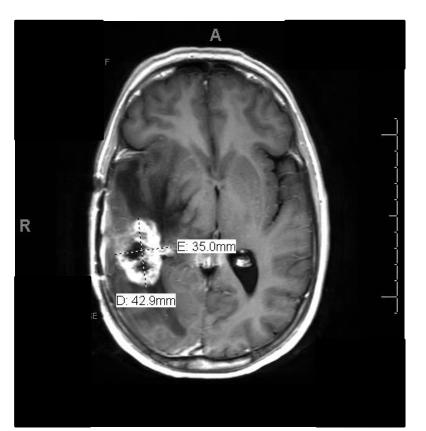
Has no real or apparent conflicts of interest to report.

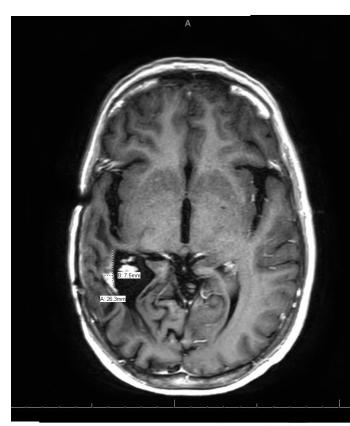


WHERE THE WORLD CONNECTS FOR HEALTH

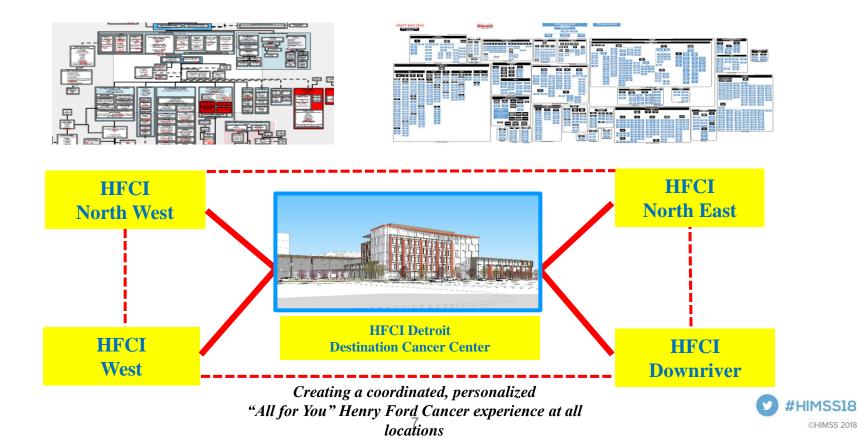
Learning Objectives

- Explore precision medicine capabilities on the horizon
- Identify challenges of building a scalable precision medicine program that delivers at the point of care
- Summarize the convergence of research and routine clinical care in precision medicine

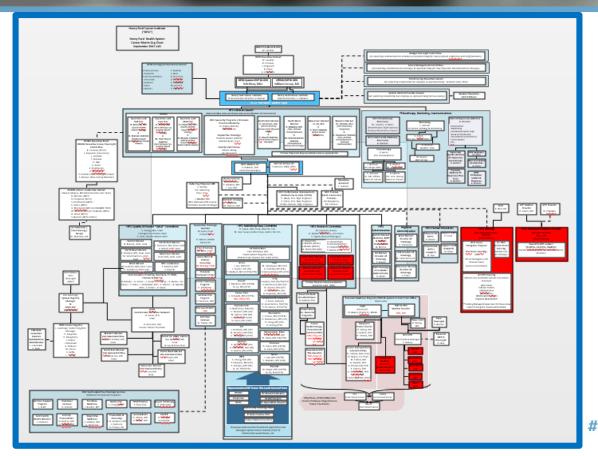



Patient Story - Glioblastoma WHERE THE WORLD CONNECTS FOR HEALTH

- 35 yo woman presents with headaches; found to have a right temporal lobe brain tumor: *Glioblastoma, WHO IV*
- Patients with this aggressive tumor (Ted Kennedy, Bo Biden, John McCain) have a median survival of 15 months
- Patient underwent standard of care: brain tumor resection plus 6 weeks radiation & temozolomide chemo
- Tumor recurs 6 months later

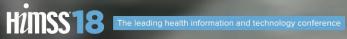

Patient Story - Glioblastoma

- Patient presents for 2nd opinion to Hermelin Brain Tumor Center at Henry Ford Hospital
- Personalized pathology analysis performed to identify molecular markers
- Patient enrolled in clinical trial specifically based on her tumor marker: EGFRviii mutation
- Patient receives IV immunotherapy for this specific marker
- Her tumor stabilizes, starts shrinking
- Patient continues to do well after 30 months



Henry Ford Cancer Institute

HIMSS 18 The leading health information and technology conference


HFCI Organizational Structure WMSS 18 The leading health information and technology conference WHERE THE WORLD CONNECTS FOR HEALTH

- 1300 FTEs
- \$1.2 Billion
- Over 7,500 analytic cases each year

#HIMSS18 ©HIMSS 2018

#HIMSS18 ©HIMSS 2018

Design Vision

HAMSS¹⁸

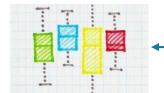
e leading health information and technology conference

H2MSS¹⁸ The leading health information and technology conference WHERE THE WORLD CONNECTS FOR HEALTH

A cancer patient navigates through a seamless experience – via a HFCI **Care Pathway**

Patients who may benefit from molecular testing are identified, ensuring patients with advanced disease receive molecular profiling to determine their eligibility for a targeted therapy

HFHS' internationally renowned pathology laboratory performs next gen sequencing with a turnaround time of 2-3 days



Molecular tumor boards can easily review cases & make recommendations based on realworld treatment and outcomes data across multiple institutions in the Oncology Precision Network (OPeN) through Syapse

Molecular tumor boards interact with experts on our 15 disease specific tumor boards

Researchers collect outcomes data to see which targeted therapies work best - for current and future treatments

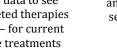
HENRY FORD

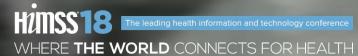
CANCER INSTITUTE

Lincoled (Table) and Bracks Bill Sect 2. Icentraline. o (Terico

All treatment information and recommendations are sent back to the referring physician

Molecular testing


increases access to clinical


trials, or assists in

creating targeted cancer

treatment

11

#HIMSS18 ©HIMSS 2018

- Cost of lab testing
- Scalability within a system
 - Germline and Somatic
 - Universal adoptability across disease sites/departments
 - Quality Measurements
- Data storage
- Data analytics
- Clinical bioinformatics expertise

Cost per Raw Megabase of DNA Sequence \$10K \$1K NGS Moore's Law \$100 \$10 \$1 National Human Genome **Research Institute** \$0.1 genome.gov/sequencingcosts #HIMSS18 2001 2002 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2003 2004 CANCER INSTITUTE

HENRY FORD

©HIMSS 2018

Growth of DNA Sequencing

he leading health information and technology conferer

WHERE THE WORLD CONNECTS FOR HEALTH

H2MSS18

1 Zbp Recorded arowth 1e+09 Double every 7 months (Historical growth rate) Double every 12 months (Illumina Estimate) Double every 18 months (Moore's Law) 1 Ebp Cumulative Number of Human Genomes Capacity 1e+06 cing Current Capacity Worldwide Annual Seqi ExAC 1st PacBio 1 Pbp TCGA Chaisson et al. 1e+03 1000 Genomes <u>1st 454</u> Wheeler et al. 1st Sanger 1st Illumina 1st Personal Genome 1 Tbp IHGSC et al. Bentley et al Levy et al. Venter et al Wang et al. Lev et al. 1e+00 2000 2005 2015 2020 2025 2010

Growth of DNA Sequencing

Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, et al. (2015) Big Data: Astronomical or Genomical?. PLOS Biology 13(7): e1002195. https://doi.org/10.1371/journal.pbio.1002195

Year

Germline vs Somatic Mutations

The leading health information and technology conference

WHERE THE WORLD CONNECTS FOR HEALTH

Somatic Mutations

- Occur in nongermline tissues
- Cannot be inherited

Germline Mutations

- Present in egg or sperm
- Can be inherited
- Cause cancer family syndrome

All cells affected in offspring

Mutation in tumor only (for example, breast)

Mutation in egg or sperm

Adapted from the National Cancer Institute and the American Society of Clinical Oncology

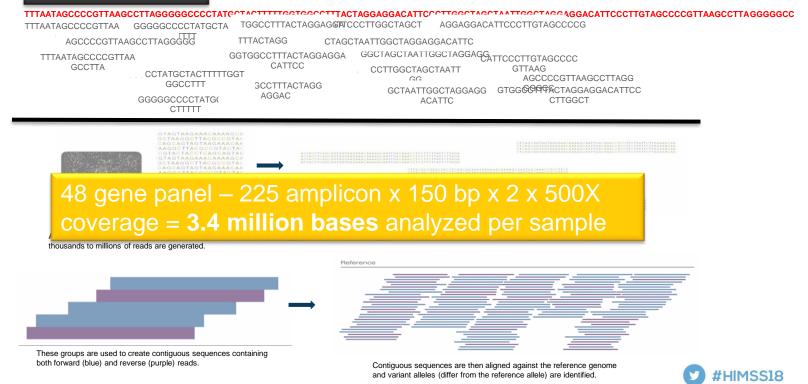
Consistent practice across an institution

The leading health information and technology conference

#HIMSS18 ©HIMSS 2018

WHERE THE WORLD CONNECTS FOR HEALTH,

Himss 18

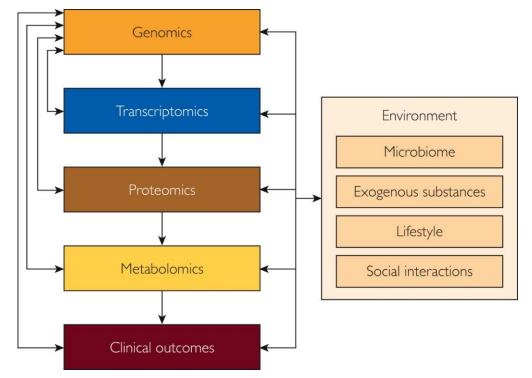

Staging	Routine Tests	Reimbursement	Tier	Available	e Treatment(s)
per AJCC	Test name (i.e. EGFR, Her 2 mutation, etc.)	Yes = SOC (w/ or w/o prior auth) No = Not SOC and not approved by	1 = Test requested by treating physician 2 = Test is requested by DTB 3 = Test is requested by MTB	On Label FDA approved drug(s)	Off Label FDA approved drug(s)
I -Illa	no routine tests	HAP	2	none	none
	EGFR (pm/del, including T790) [PCR/NGS- D] *	Yes	1	Erlotinib Afatinib Gefitinib Necitumumab	
	EGFR (T790M); ctDNA [PCR/NGS-D] *	Yes	1	Osimertinib	
	KRAS (pm) [PCR/NGC-D] *		1	none	none
	NRAS (pm) [PCR/NGS-D] *		1	none	none
IIIb, IV	BRAF (pm) [PCR/NGS-D] *#		1	Vemurafenib Dabrafenib Trametinib	
	MET (pm/del/ins) [PCR/NGS-D] *#		1	none	Crizotinib Cabozantinib Capmatinib
	MET (ampl/rearrang) [FISH/NGS-R] \$	НАР	1	none	Crizotinib Cabozantinib Capmatinib
	ERBB2 (pm/del/ins) [PCR/NGS-D] * #	НАР	1	Afatinib Lapatinib	
	ALK (rearrang) [FISH */NGS-R \$]	НАР	1	Crizotinib Ceritinib Alectinib Brigatinib	
	ROS1 (rearrang) [FISH */NGS-R \$]				
	RET1 (rearrang) [FISH */NGS-R \$]				
	PD-L1 immunocytochemistry \$	HAP	1		
	MSI [ICC */ NGS \$]	НАР	2	Nivolumab Pembrolizumab Avelumab	
	Experimental Clinical Trial NGS Panel */\$	HAP	3	none	none

Data Generated

WINSS 18 The leading health Information and technology conference WHERE THE WORLD CONNECTS FOR HEALTH

©HIMSS 2018

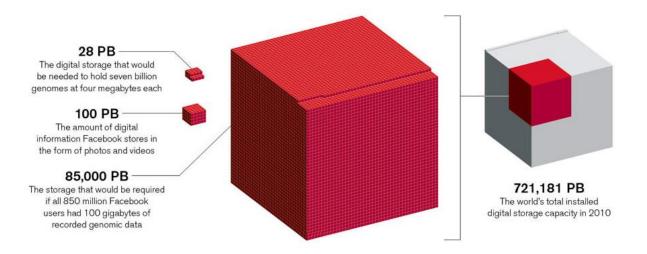
Reference sequence $\rightarrow \rightarrow$



The "Personalome"

 HIMSS 18
 The leading health information and technology conference

 WHERE THE WORLD CONNECTS FOR HEALTH


Copyright © 2017 Mayo Foundation for Medical Education and Research Terms and Conditions

Data Storage

WHERE THE WORLD CONNECTS FOR HEALTH

Data Storage Challenge

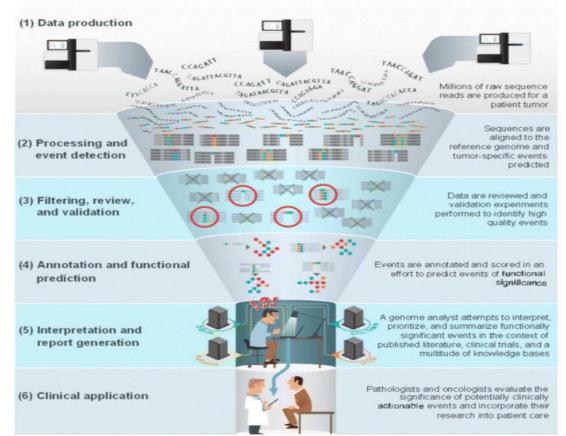
Digital information storage (in petabytes)

Source: Illumina, Facebook, IDC https://www.technologyreview.com/s/427720/bases-to-bytes/ 20

WINSS 18 The leading health information and technology conference WHERE THE WORLD CONNECTS FOR HEALTH

Data Phase	Astronomy	Twitter	YouTube	Genomics
Acquisition	25 zetta-bytes/year	0.5–15 billion tweets/year	500–900 million hours/year	1 zetta-bases/year
Storage	1 EB/year	1–17 PB/year	1–2 EB/year	2–40 EB/year
Analysis	In situ data reduction	Topic and sentiment mining	Limited requirements	Heterogeneous data and analysis
	Real-time processing	Metadata analysis		Variant calling, ~2 trillion central processing unit (CPU) hours
	Massive volumes			All-pairs genome alignments, ~10,000 trillion CPU hours
Distribution	Dedicated lines from antennae to server (600 TB/s)	Small units of distribution	Major component of modern user's bandwidth (10 MB/s)	Many small (10 MB/s) and fewer massive (10 TB/s) data movement

doi:10.1371/journal.pbio.1002195.t001

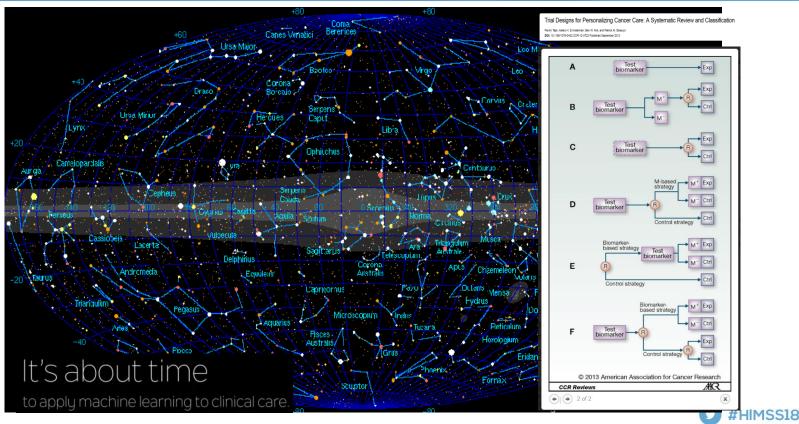


WHERE THE WORLD CONNECTS FOR HEALTH

HIMSS¹⁸

The interpretation of this data is a bottleneck

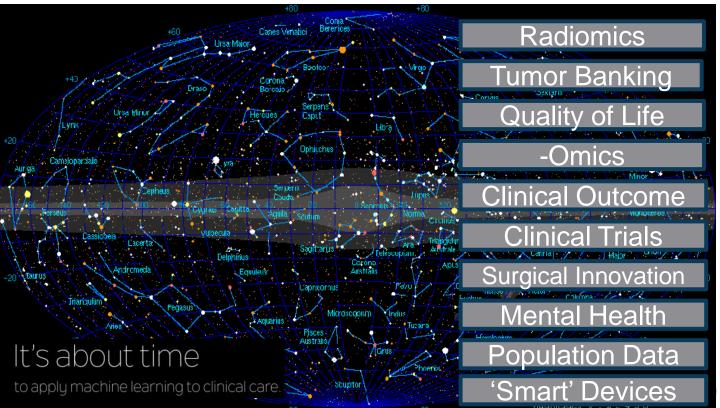
Good BM, Genome Biology 2014; 15:438


©HIMSS 2018

#HIMSS18

We are modern day cartographers for the future of oncology...

he leading health information and technology conference



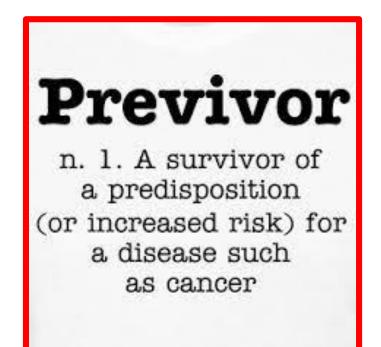
he leading health information and technology conference

...identifying new constellations for investigation WHERE THE WORLD CONNECTS FOR HEALTH

HEALTH SYSTEM HEALTH SYSTEM HENRY FORD CANCER INSTITUT

©HIMSS 2018

#HIMSS18


Using Big Data to Predict the Future: Convergence of AI and Precision Medicine

TheFutureOf.org and The Jacobs Institute

WHERE THE WORLD CONNECTS FOR HEALTH

Using Big Data to Predict the Future: Convergence of AI and Precision Medicine

Previvor n. 1. A survivor of a predisposition (or increased risk) for a disease such

as cancer

 Artificial Intelligence + Precision Medicine + Machine Learning means we may become "previvors"—identifying which of 10,000 known human diseases are in our future long before symptoms

WHERE THE WORLD CONNECTS FOR HEALTH

- Soon, predictions will become more accurate and occur earlier increasing the time we have to effect change and seek help
- ONCE WE BECOME A PREVIVOR OF A PARTICULAR DISEASE, WHAT CAN WE DO ABOUT IT? BAND TOGETHER INTO PREVIVOR COMMUNITIES—AND PUSH FOR CURES
- Impact already seen in BRCA1 and BRCA2 mutation previvors and among healthy individuals carrying HIV → groups coalesced into large consumer-activist organizations advocating for novel treatments and compelling regulatory agencies to speed adoption of promising drugs and interventions
- Unfortunately, ability to forecast disease outpaces breakthroughs for effective interventions. Facilitated by social media, connected groups of previvors will band together to share peer-to-peer information—some junk science, but some valuable and potential curative innovations as site

TheFutureOf.org and the Jacobs Institute 27

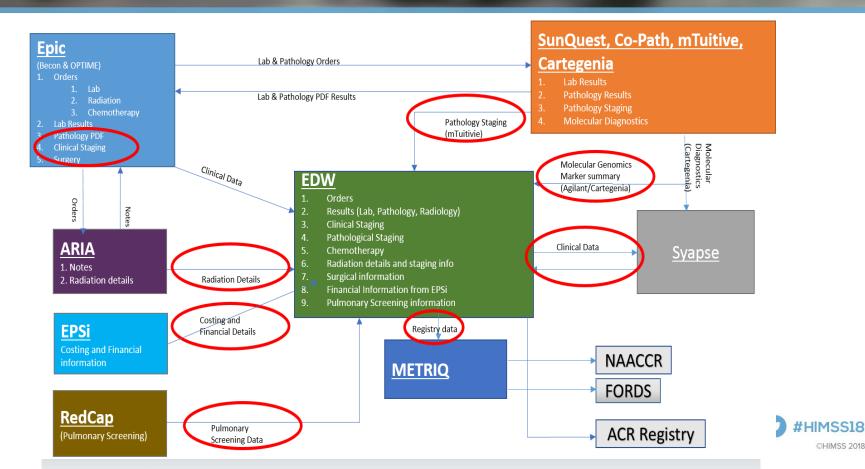
Previvor

		CURRENT DIAGNOSIS AND TREATMENT	KEY PREVIVORS FUTURE MOMENTS	POSSIBLE PREVIVORS PREVENTATIVE TREATMENTS	
	Broast cancor	BRCA1 and BRCA2 mutation. Breast removal.	to know with more certainty	Gene therapy using CRISPR will remove health threats encoded in BRCA genes and keep them from being passed to future generations.	
Previvor	Parkinson's disease	symptoms. Family history	Our interactions with touch screens will pick up early signs of the condition.	Early deep-brain stimulation— either through wearable or implantable devices—will be employed at earliest signs of the condition.	
n. 1. A survivor of a predisposition (or increased risk) for a disease such	Alzheimer's disease	diagnose Alzheimer's. Family history increases likelihood. Low	polygenic risks and brain imaging will predict the disease in early adulthood.	Optogenetic stimulation of interneurons through implantable devices may decrease amyloid-beta production before symptoms appear.	
as cancer	Celiac disease	can provide a diagnosis. Dietary		A sensor and drug delivery device placed into the digestive tract meters out pneumococcal vaccine for ongoing treatment.	
		Prediabetes blood testing can give type 2 previvors a decade to make behavior changes.	provide new data for doctors	Personalized diet designed for individual genome. Constant blood and metabolism monitoring.	
TheFutureOf.org and The Jacobs Institute	Cardiovascular disease			Patients check into hospitals before life-threatening cardiovascular events.	

How do we achieve this?

 Image: Construction and technology conference

 WHERE THE WORLD CONNECTS FOR HEALTH


Previvor

n. 1. A survivor of a predisposition (or increased risk) for a disease such as cancer

Setting the Foundation – Data interoperability

HINSS 18 The leading health information and technology conference

Key capabilities needed for precision medicine

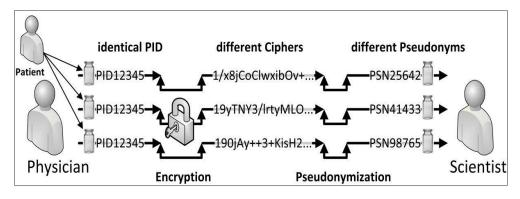
Figure 2. When it comes to supporting precision medicine with technology, respondents feel data warehouses are essential.

HIMSS

WHERE THE WORLD CONNECTS FOR HEALTH

Which technologies does your organization consider essential in the development of a precision medicine program? Select all that apply.

Data warehouse	50.9%		26.9	26.9%		17.6%	
Laboratory information management solutions	42.6%		32.4%		3.7%	22.2%	
Analytics/data-mining platform (for both structured and non-structured data)	38.0%		40.7%		5.6%	17.6%	
Specimen collection management solution	27.8%	27.8% 11.1%			33.3%		
Outside storage/computing capabilities (the cloud)	25.9%	40.7%		7.4%	% 25.9%		
Precision medicine enabled EMR (clinical & genomic data integration, molecular support at POC, internal/external lab	23.1%	40.7%		12.0%		24.1%	
Molecular diagnostic/sequencing analysis solution	22.2%	34.3%	12.0%	6	31.5%		
Precision-medicine platform	20.4%	45.4%		5.6%	28.7%		
Clinical trial research management platform	20.4%	27.8%	25.0%	25.0%		27.8%	
Bio bank for clinical specimens	19.4%	25.0%	15.7%	5.7%		39.8%	
	Current Essential	Essential within 2 ye	ears Not	Essential	U	nsure	



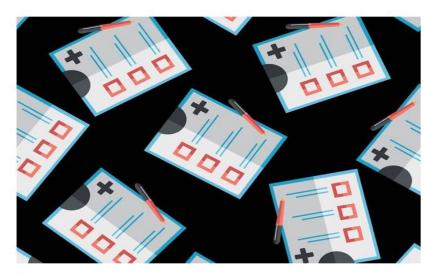
HIMSS 2017 Precision Medicine survey of Healthcare organizations

#HIMSS18

Data Protection

- Pseudonymization: Informational Separation of Powers
 - The larger the data set the more likely to identify the patient
 - nonspeaking pseudonym: replace patients' identifying data (eg, name, date of birth) with an identifier that conveys no meaning by itself
- Record Linkage
 - motivation to delegate pseudonymization
- Intellectual property protection

Will Blockchain help us?


HAMSS¹⁸

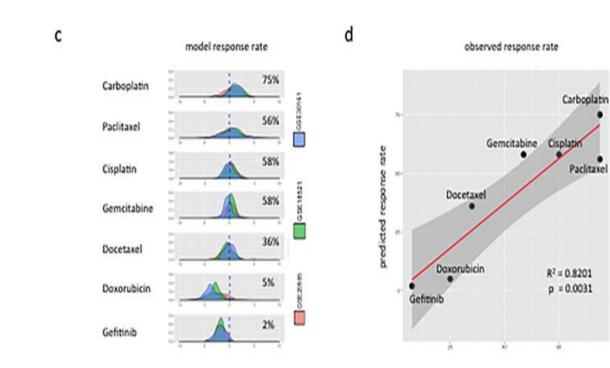
he leading health information and technology conference

WHERE THE WORLD CONNECTS FOR HEALTH

MEGAN MOLTENI SCIENCE 02.01.17 07:00 AM

MOVING PATIENT DATA IS MESSY, BUT BLOCKCHAIN IS HERE TO HELP

GETTY IMAGES


https://www.wired.com/2017/02/movingpatient-data-messy-blockchain-help/

The leading health information and technology conference

WHERE **THE WORLD** CONNECTS FOR HEALTH

H2MSS¹⁸

Huang C. PLoS ONE 12 (10): e0186906

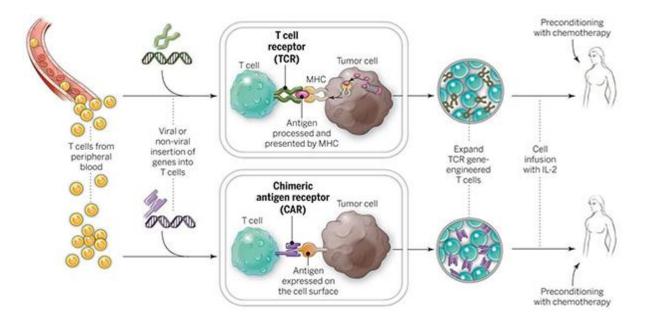
Convergence of Research and Routine Clinical Care: *Precision Medicine 2025?*

35

Wearable devices

The leading health information and technology conference

WHERE THE WORLD CONNECTS FOR HEALTH

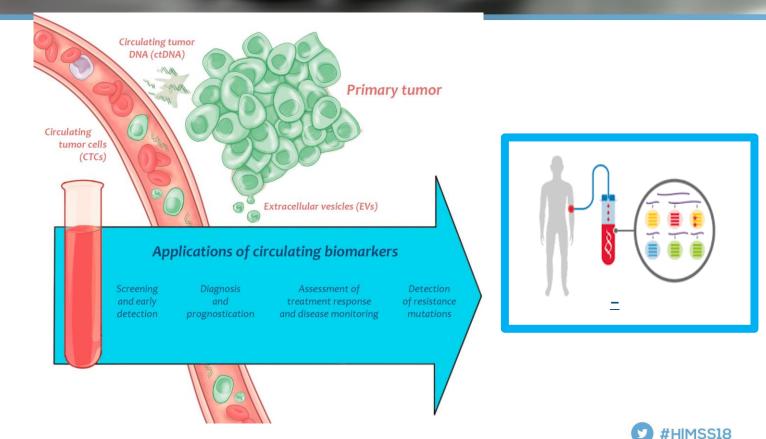

36

CAR-T Therapy

 HIMSS 18
 The leading health information and technology conference

 WHERE THE WORLD CONNECTS FOR HEALTH

37

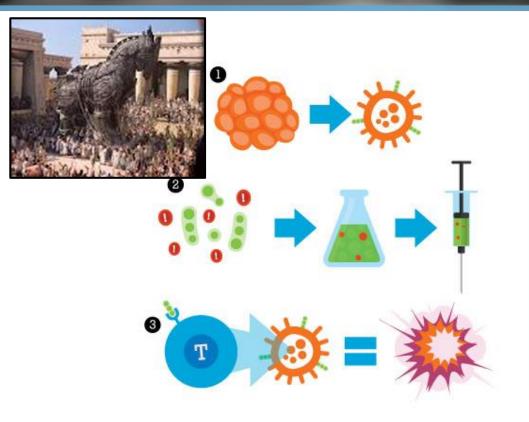

National Cancer Institute

Circulating tumor DNA (ctDNA)

HAMSS 18

The leading health information and technology conference

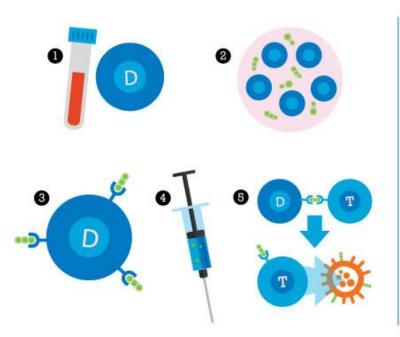
WHERE **THE WORLD** CONNECTS FOR HEALTH



Retroviral Gene Therapy and Cancer Vaccines

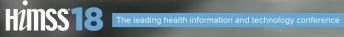
 WINSS18
 The leading health information and technology conference

 WHERE THE WORLD CONNECTS FOR HEALTH


Cancer Vaccine Treatments: Antigen Vaccines

- 1. Cancer cells are removed from a patient's tumour.
- Specific markers on the cancer cells (antigens) are isolated and mixed with a "danger signal" called an adjuvant to create the vaccine.
- Vaccine is given to the patient. These cancer markers teach the immune system (T cells) to recognize cancer cells and to attack and destroy them.

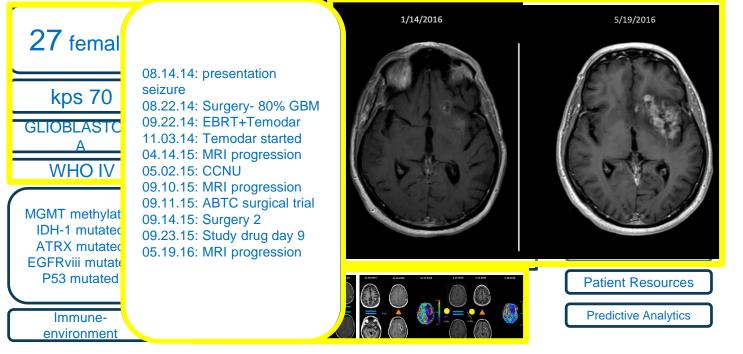
Dendritic Cell Vaccines


WHERE THE WORLD CONNECTS FOR HEALTH

Cancer Vaccine Treatments: Dendritic cell vaccines

- 1. Dendritic cells, a type of immune cell that plays an important role in starting an immune response, are isolated from a patient's blood.
- 2. They are mixed with a cancer marker (antigen) in a dish, in the lab.
- 3. Dendritic cells take in the antigen and post them like flags on their surface.
- 4. The vaccine is created from the dendritic cells and is injected back into the body.
- 5. The vaccine triggers another type of immune cell (T cells) to destroy cancer cells.

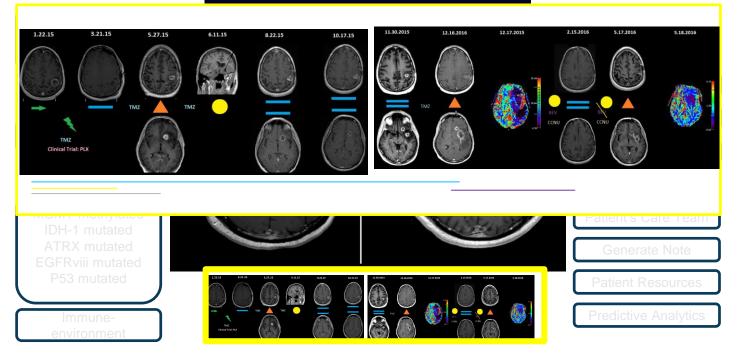
WHERE THE WORLD CONNECTS FOR HEALTH


Immuneenvironment Predictive Analytics

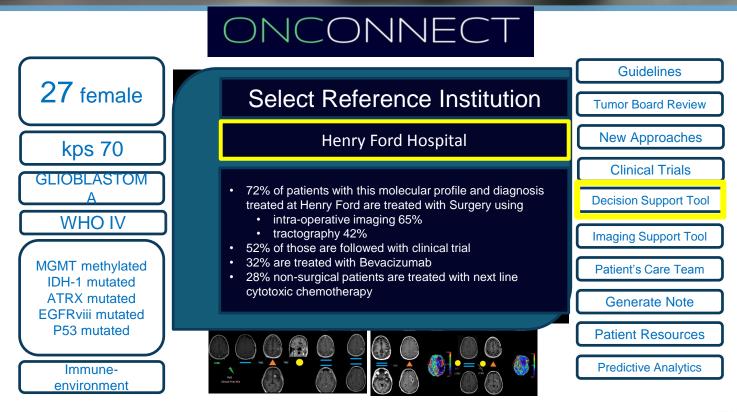
WHERE THE WORLD CONNECTS FOR HEALTH

HUMSS¹⁸

ONCONNECT

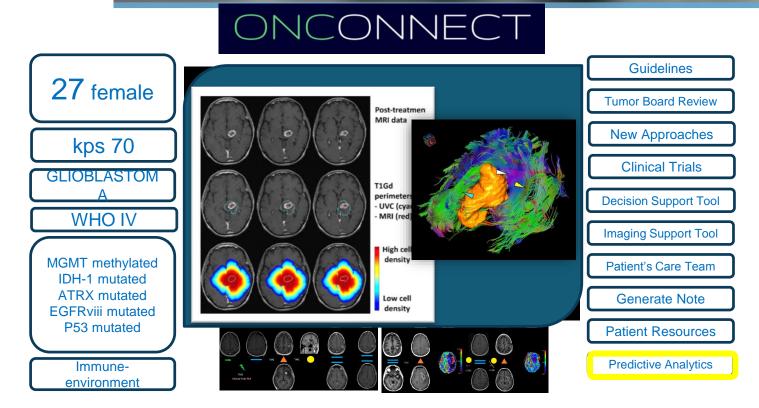


ONCONNECT



WHERE THE WORLD CONNECTS FOR HEALTH

H2MSS¹⁸



WHERE THE WORLD CONNECTS FOR HEALTH

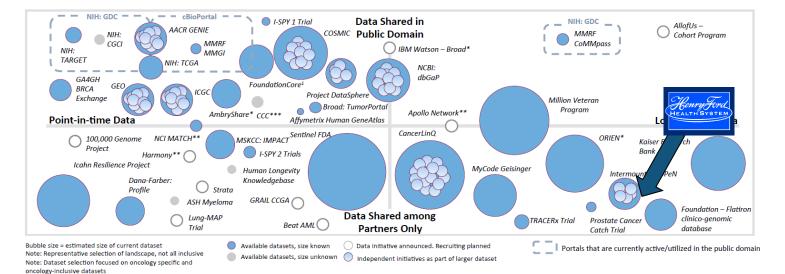
⁴⁷Generating Real World Evidence vs. RCTs

Marker assessment in glioma using a comprehensively annotated brain tumor bank

Table 1. Strengths and Weaknesses of RWE and RCTs

Characteristic	RWE	RCTs	
Standard of evidence	Complementary to RCT	Gold standard	
Cost	Less costly	Costly to develop and conduct	
Patient population	Promotes evaluation of patient populations not typically studied in clinical trials; helps verify evidence in real- world patient population	Patient population is well defined within the constraints of specific eligibility criteria; results reflect outcomes in limited population	
	Patient data derived from atypical sources, such as insurance claims and disease databases	Requires substantial number of patients to identify differences between treatments	
Sample size	Enormous sample size possible (big data)	Limited sample size; prior knowledge required for sample- size calculation	
Efficacy	More chances for data bias and residual confounding because true randomization and blinding not possible	Minimizes the risk for data bias and confounding because randomization and blinding possible	
Toxicity	Helps uncover important toxicity signals that require long follow-up	Only acute and common toxicities are revealed	
Approval of new therapies	Not suitable for approving interventions but helpful to validate RCT findings	approval	Bishal Gyawali, Sandeep Parsad, Bruce A. Feinberg, and Chadi Nabhan
Role in precision oncology	Can reveal some important target-drug combinations for later testing in an RCT	Helpful to definitively test the target-drug combinations identified through RWE	JCO Precision Oncology 2017:1, 1-
	Can encourage drug-repurposing efforts in precision oncology ²⁵		©HIMSS 2018

WHERE THE WORLD CONNECTS FOR HEALTH


Pioneering data sharing network created to accelerate cancer precision medicine development.

Oncology Precision Medicine Data Landscape

The leading health information and technology conference

WHERE THE WORLD CONNECTS FOR HEALTH

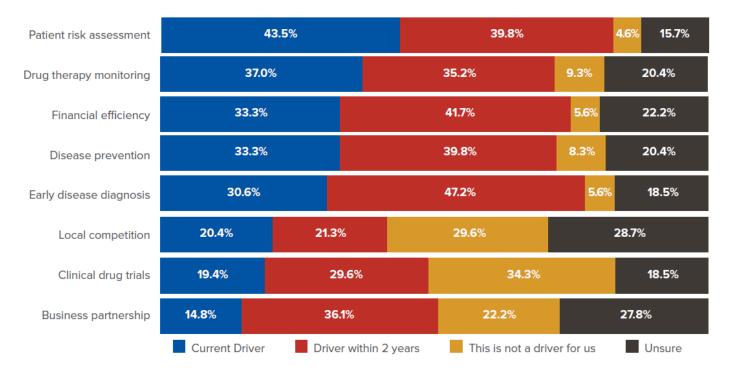
Opportunity exists to generate publicly available longitudinal data to drive understanding of genetic mutations and find Precision Medicine cures

*Datasets have potential to include longitudinal data in the future

***Serves as a portal also, has potential to include longitudinal data in the future

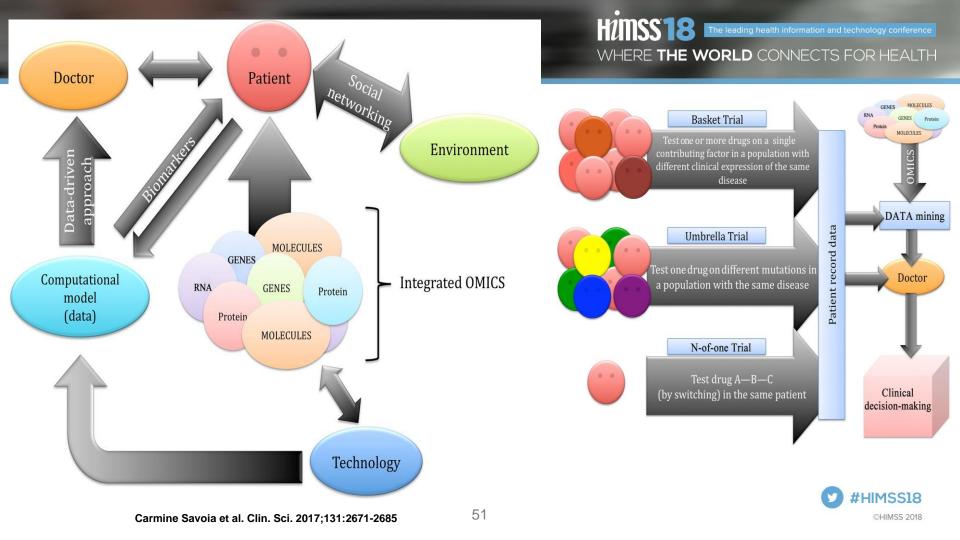
**Public/private information not available

1. FoundationCore's pediatric cancer data has been made public


HEALTH SYSTEM HEALTH SYSTEM HENRY FORD CANCER INSTITUTE

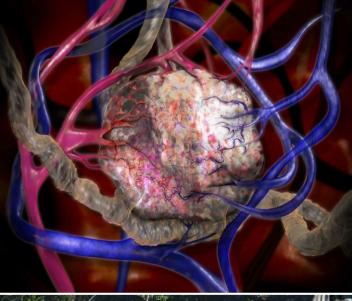
http://www.hbs.edu/healthcare/Documents/KPMA/Precision%20Medicine%20Data%20Landscape_011617_Web.pdf

WHERE THE WORLD CONNECTS FOR HEALTH


HAMSS

Source- HIMSS 2017 Precision Medicine survey of Healthcare organizations 50

- We are 99.9% identical at DNA level
- But... every one of us is unique.
- If we print DNA sequence ... that is 3 billion bases in a haploid genome of your entire genetic code
 - would occupy some 262,000 pages, or 175 large books!
 - only about 500 pages would be unique to us



HE WORLD CONNECTS FOR HEAI

Going From the Trail to the Summit in Precision Medicine

- Massive Data
 Storage
- Unprecedented data analytics
- Point of care data interpretation via global bioinformatic crowdsourcing
 Explosion in new targeted drugs

What you think is the summit is only the next step up...

Whether you think you can or you can't, you're right.

Henry Ford

WHERE THE WORLD CONNECTS FOR HEALTH

Questions

Acknowledgements:

Nadia Haque, PharmD, MHSA Spencer Hoover, MBA, MFin Igor Rybkin, MD Dhan Chitale, MD Ding Wang, MD Louisa Laidlaw, MHSA **Pravin Sapre** Josephine Molle Houtan Noushmehr, PhD James Snyder, DO

NCER INSTITUTE

