Early-Detection Pediatric Sepsis Algorithm

Matthew Eisenberg, MD, Division of Emergency Medicine
Kate Madden, MD, MMSc, Division of Critical Care Medicine
Boston Children’s Hospital and Harvard Medical School, Boston, MA
Session #29: March 6, 2018

Boston Children’s Hospital
Until every child is well

HARVARD MEDICAL SCHOOL
TEACHING HOSPITAL

www.himssconference.org

Disclaimer: The views and opinions expressed in this presentation are those of the author and do not necessarily represent official policy or position of HIMSS.
Conflict of Interest

Statistical and project management support for this study were provided by an electronic medical record vendor

Drs. Madden and Eisenberg received no financial support and have no other disclosures or conflicts of interest
Agenda

• Background
• Creating a pediatric sepsis detection algorithm
• Algorithm performance
• Implementation into clinical workflows
• Future directions
Learning Objectives

• Recognize the process used to develop and evaluate the pediatric sepsis algorithm at Boston Children’s Hospital

• Describe the range of operating characteristics of the pediatric sepsis algorithm based on different changes to the algorithm

• Identify the strategy for inserting the algorithm into clinical workflows

• Discuss the plans to iterate on the algorithm moving forward
Background

• Pediatric vs. adult sepsis

• Quality improvement efforts in pediatric sepsis

Source: www.childrenshospitals.org
2017 Children’s Hospital Photo Exhibit
Rory Staunton, a 12 year-old cut his arm during basketball practice in school.

March 28

Rory woke up vomiting and complaining of pain in his leg. He later developed a fever of 104.

March 29 - morning

Rory went to the emergency room and was discharged two hours later, after being diagnosed with "acute febrile gastritis" (the flu).

March 29 – 7:14 pm

Rory Staunton died in intensive care of septic shock brought on by the infection.

April 1

https://rorystauntonfoundationforsepsis.org/
Pediatric Sepsis

- 4,000 children die annually of sepsis in the U.S.
 - more than cancer (~1,800) or gun violence (~1,700)
- #1 cause of mortality in children worldwide
- Adults vs. Kids
 - Adult sepsis criteria – SCCM/ES-ICM Sepsis 3 (JAMA 2016)
 - Defines sepsis with organ dysfunction
 - Organ dysfunction not a sensitive sign in pediatrics
 - Children develop shock later in course
The Challenge of Recognition

Adults
- Sepsis identification tools based on one set of criteria
- Organ dysfunction included in sepsis definition
- Hypotension an earlier sign

Children
- Vital sign & lab criteria differ based on age groups
- Tools must incorporate many different age-based cutoffs
- Organ dysfunction a later sign
- Hypotension occurs late
<table>
<thead>
<tr>
<th>Care Element</th>
<th>Pre-intervention Adherence, n (%)</th>
<th>Post-intervention Adherence, n (%)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recognition within 5 min</td>
<td>180 (79)</td>
<td>113 (97)</td>
<td>.011</td>
</tr>
<tr>
<td>Vascular access within 5 min</td>
<td>84 (67)</td>
<td>104 (90)</td>
<td><.001</td>
</tr>
<tr>
<td>60 mL/kg IV fluid within 60 min</td>
<td>47 (37)</td>
<td>85 (73)</td>
<td><.001</td>
</tr>
<tr>
<td>Antibiotics within 60 min</td>
<td>88 (70)</td>
<td>99 (86)</td>
<td>.02</td>
</tr>
<tr>
<td>Vasoactive agents started at 60 min</td>
<td>44 (35)</td>
<td>79 (68)</td>
<td><.001</td>
</tr>
<tr>
<td>Overall bundle adherence</td>
<td>24 (19)</td>
<td>90 (78)</td>
<td><.001</td>
</tr>
<tr>
<td>Appropriate fluid mechanism used (pressure bag, rapid-infuser, manual push)</td>
<td>62 (49)</td>
<td>110 (95)</td>
<td><.001</td>
</tr>
<tr>
<td>Algorithmic Alert</td>
<td>Physician Judgement (PJ)</td>
<td>Combination</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe Sepsis +</td>
<td>Severe Sepsis +</td>
<td>Severe Sepsis -</td>
</tr>
<tr>
<td>Alert +</td>
<td>81</td>
<td>64</td>
<td>95</td>
</tr>
<tr>
<td>Alert -</td>
<td>7</td>
<td>24</td>
<td>19,341</td>
</tr>
<tr>
<td>Sum</td>
<td>88</td>
<td>88</td>
<td>19,436</td>
</tr>
<tr>
<td>PPV</td>
<td>2.5</td>
<td>40.3</td>
<td>Either +</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>92</td>
<td>73</td>
<td>Either +</td>
</tr>
</tbody>
</table>

- Proportion of all patients with a positive screen for potential sepsis
 - algorithmic alerts - 16.9% (3,301)
 - physician judgment (PJ) - 0.8% (159)
 - combined either positive - 17.1% (3,334)

2 Step Alert Process

<table>
<thead>
<tr>
<th>Outcome measures</th>
<th>Process measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>- sepsis mortality</td>
<td>- initial clinical assessment</td>
</tr>
<tr>
<td>- rapid transfers and bounce backs</td>
<td>- timely first and third bolus</td>
</tr>
<tr>
<td></td>
<td>- timely antibiotics</td>
</tr>
<tr>
<td></td>
<td>- timely transfer to ICU</td>
</tr>
<tr>
<td>Balancing measure</td>
<td>Supplemental measures</td>
</tr>
<tr>
<td>- false positive rate</td>
<td>- hospital LOS</td>
</tr>
<tr>
<td></td>
<td>- ICU LOS</td>
</tr>
<tr>
<td></td>
<td>- days on vasopressors</td>
</tr>
<tr>
<td></td>
<td>- lab bundle obtained (cbc, lactate, blood cx)</td>
</tr>
</tbody>
</table>
Creating a Pediatric Sepsis Detection Algorithm

• Algorithm creation

• Defining sepsis “gold standard”

Source: www.childrenshospitals.org
2017 Childrens’ Hospital Photo Exhibit
Project Goal

• Develop an automated sepsis screening tool to alert clinicians of children at risk of severe sepsis
 – Earlier detection → more rapid intervention
 – Prevent missed cases
Partnering with the Vendor

- Vendor had pre-existing adult sepsis screening tool
 - Not designed for use in children
- Vendor team
 - Performance improvement strategists
 - Statisticians
- BCH team
 - Critical care and emergency medicine physicians
Challenges

• Difficult to distinguish sepsis from vital signs/labs alone
 – Most detection tools have low specificity
 – High risk of alarm fatigue

• Sepsis and severe sepsis are not easily defined
 – Gold standard needed to evaluate tool performance
 – Diagnosis codes inaccurate
Methods

• Alerts based on accepted vital sign and lab values* for:
 – Systemic inflammatory response syndrome (SIRS)
 – Sepsis
 – Severe sepsis/Septic shock
• Run tool in silent mode for 5 months
• Compare silent “alerts” to pre-defined gold standard cohort to assess/maximize tool performance

Alert Levels:

• **SIRS alert**: 2, 3 or 4 SIRS criteria without organ dysfunction

• **Sepsis alert**: SIRS with 1 organ dysfunctions (non-cardiac)
 – Suspected infection planned for future eval

• **Severe sepsis**: SIRS and cardiac dysfunction or 2 other organ dysfunctions
SIRS Criteria

- Body Temperature
- WBC
- Heart Rate
- Respiration Rate

Temp. or WBC?

≥ 2 SIRS?

YES

NO

NO

Continue Monitoring

Organ Dysfunctions

Cardiovascular (CVD)

Hematologic

Hepatic

Neurologic

Renal

Respiratory

Any Od?

YES

NO

≥ 2 OD or CVD?

YES

NO

SIRS-2, SIRS-3, or SIRS-4 Alert

Sepsis Alert

Severe Sepsis Alert
Defining Organ Dysfunction

- Cardiovascular
 - Hypotension or vasoactive drug or
 - ≥2 of: acidosis, elevated lactate, oliguria, prolonged capillary refill, core → peripheral temp gap
- Respiratory: Hypoxia, hypercarbia, ventilator support
- Neurologic: Altered mental status
- Hematologic: Low platelets, elevated INR
- Renal: Elevated creatinine
- Hepatic: Elevated bilirubin or ALT

Organ Dysfunction Sub Algorithms

- High Capillary Refill
- High ALT
- Low Platelets
- Low Systolic BP
- High INR
- Low PaO2
- Low PaCO2
- High Temp

Risk For Infection Sub Algorithm

- High Band Manual
- Infection
- Immune Deficiency
- Inborn Error of Metabolism
- Central Access
- Foley Inserted

SIRS Sub Algorithms
Defining gold standard sepsis cohort

- No single test defines sepsis
- ICD codes are inaccurate
- Defined gold standard by clinician “intention to treat” severe sepsis
 - Also adopted by IPSO sepsis collaborative
Defining severe sepsis

• Patient with suspected infection (SI)
 – SEPSIS-3* Criteria: Blood culture within 72 hours before/24 hours after IV antibiotic

AND

• One of the following between 4 hours before and 6 hours after SI
 – ≥35 cc/kg or 2 L or 2 boluses of isotonic IVF within 2 hours
 – or IV vasopressor
 – or transfer to ICU

*Singer, JAMA, 2016
Intention to Treat

SI (Cultures)

72h

24h

ABX

Intervention

4h 6h
Defining severe sepsis

• To ensure no missed cases, also reviewed all charts of:
 – Patients with diagnosis code for severe sepsis or septic shock
 – Patients who died and had diagnosis code for infectious disease
Results: Data set

• All Inpatient and ED encounters over 5 months in 2016
 – 31,286 encounters
 – 22,766 unique persons

• Excluded neonatal ICU
 – Neonatal sepsis is different entity, has different definitions
 – Excluded both alerts and episodes of sepsis that occurred in NICU
 • Exception: patient alerted in another location (e.g. ED) then transferred to NICU
Results: Gold Standard Cohort

• 342 patient encounters (1.5%) met gold standard
 – Intention to treat: 335 encounters
 – Severe sepsis diagnosis code: 7 unique encounters
 – Death with infectious disease diagnosis code: 0 unique encounters
Algorithm Performance

• Performance of the initial algorithm
• Iterations to improve performance
• Final performance characteristics

Source: www.childrenshospitals.org
2017 Childrens’ Hospital Photo Exhibit
Alert location on patient & encounter level

GS alerts = alert within 48 hours of meeting “gold standard” for sepsis
Alert by severity level
Contribution of variables to alerts
Iterations of algorithm analyzed

- Goldstein reference ranges
- Different respiratory rate ranges:
 - No Respiratory Rates
 - 25% and 50% increases in Goldstein RR ref. ranges
 - 25% and 50% increases in Goldstein RR ref. ranges without SIRS-2 alerts
 - Bonafide 75th, 80th, 85th and 90th percentile RR for ref. range cutoffs
- Different lookback periods
 - HR AND Temp within 30 minutes of each other
 - Temp. 4h, blood gases 6h, other labs 24h
- Different SIRS variables
 - No SIRS-2 alerts
 - Restrictive SIRS
- Different iterations of bands:
 - Immature Granulocytes instead of bands
 - No bands

Alternate Vital Sign Criteria

<table>
<thead>
<tr>
<th>Age Groups</th>
<th>Goldstein RR</th>
<th>Bonafide 75% RR</th>
<th>Bonafide 95% RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6 days</td>
<td>50</td>
<td>48</td>
<td>62</td>
</tr>
<tr>
<td>7-29 days</td>
<td>40</td>
<td>48</td>
<td>62</td>
</tr>
<tr>
<td>1 month - 1 year</td>
<td>34</td>
<td>40</td>
<td>51</td>
</tr>
<tr>
<td>2-5 years</td>
<td>22</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>6-12 years</td>
<td>18</td>
<td>26</td>
<td>33</td>
</tr>
<tr>
<td>13-17 years</td>
<td>14</td>
<td>21</td>
<td>27</td>
</tr>
</tbody>
</table>

Test Characteristics of Alert Iterations

<table>
<thead>
<tr>
<th>Metric</th>
<th>Goldstein</th>
<th>Bonafide 75%</th>
<th>Bonafide 95%</th>
<th>No RR</th>
<th>No SIRS-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>87.7%</td>
<td>83.9%</td>
<td>80.4%</td>
<td>75.4%</td>
<td>79.8%</td>
</tr>
<tr>
<td>Specificity</td>
<td>86.9%</td>
<td>91.4%</td>
<td>93.2%</td>
<td>94.2%</td>
<td>92.8%</td>
</tr>
<tr>
<td>PPV</td>
<td>9.2%</td>
<td>13.0%</td>
<td>15.2%</td>
<td>16.5%</td>
<td>14.4%</td>
</tr>
<tr>
<td>Person Alerts (%)</td>
<td>14.2%</td>
<td>9.7%</td>
<td>7.9%</td>
<td>6.8%</td>
<td>8.3%</td>
</tr>
</tbody>
</table>

Unit specific performance

Emergency Department

<table>
<thead>
<tr>
<th>Alert Severity</th>
<th># Alerts</th>
<th># Alerted Persons</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRS</td>
<td>1,157</td>
<td>1,085</td>
<td>9%</td>
</tr>
<tr>
<td>Sepsis</td>
<td>136</td>
<td>115</td>
<td>20%</td>
</tr>
<tr>
<td>Severe Sepsis</td>
<td>104</td>
<td>95</td>
<td>36%</td>
</tr>
<tr>
<td>All</td>
<td>1,397</td>
<td>1,213</td>
<td>12%</td>
</tr>
</tbody>
</table>

PPV in other inpatient services 5%

Intensive Care Unit

<table>
<thead>
<tr>
<th>Alert Severity</th>
<th># Alerts</th>
<th># Alerted Persons</th>
<th>PPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRS</td>
<td>424</td>
<td>228</td>
<td>12%</td>
</tr>
<tr>
<td>Sepsis</td>
<td>384</td>
<td>177</td>
<td>12%</td>
</tr>
<tr>
<td>Severe Sepsis</td>
<td>767</td>
<td>234</td>
<td>27%</td>
</tr>
<tr>
<td>All</td>
<td>1,575</td>
<td>443</td>
<td>19%</td>
</tr>
</tbody>
</table>

©HIMSS 2018
Implementation into Clinical Workflows

• Current state

• Implementation in the emergency department

Source: www.childrenshospitals.org
2017 Children’s Hospital Photo Exhibit
Current state of sepsis process

• Sepsis screening tool
 – Emergency department: embedded in EHR
 – Rest of hospital: paper form

• Sepsis/septic shock order sets

• Tracking board icons: ED only

• Sepsis huddles

• QI: Education/socialization, PDSA cycles, measurement
Caution: alert fatigue

• Children frequently have abnormal vital signs when febrile, scared or in pain
 – Few of these children actually have severe sepsis
• Most children with severe sepsis are identified by clinicians
 – “Added value” of alert can be low
• Risk of alert fatigue is high
Caution: alert fatigue

• Recent study of an electronic sepsis surveillance system in an adult ER showed high alert fatigue and no improvement in outcomes
 – Sensitivity of alert 80%; PPV 15%
• Alert fatigue
 – Only two-thirds of patients with documented sepsis had a clinician respond to the alert
 – >20% of patients with sepsis had a clinician respond that sepsis was not present

Austrian, JAMIA, 2017
How to reconcile

• Alerts are important but PPV is low
• Clinician judgment still necessary
 – Healthy vs. immunocompromised
 – “Sick” vs. “Not sick”
• Solution in BCH ED: 2 stage process
 – SIRS or Sepsis alert → secondary screen
 – Severe sepsis alert (higher PPV): sepsis huddle
Stage 1: Automated Alert

+ SIRS/SEPSIS ALERT

- Alert goes to attending, trainee and RN assigned on tracking board
- No assignment → Any RN with “relationship”
Stage 2: Active Screening

RN Fills out Sepsis Screen

+SIRS/SEPSIS ALERT
Active Screen

• Link within discern notification to clickable form
• **Question 1:** Does patient have fever or do you suspect infection
 – If no → form closes
 – If yes → answer question 2
• **Question 2:** Does the patient have any of the following:
 – Immuno-compromise or high risk of sepsis (e.g. CVL)
 – Altered mental status
 – Altered pulses/perfusion
• “Positive screen” if yes to both questions
ED sepsis protocol

Routine Care

RN Fills out Active Screen

Positive

Sepsis Huddle

Shock?

Not shock

Q15 Min Vital Signs x 2 hrs

Any other time MD or RN is concerned for sepsis

+SIRS/SEPSIS ALERT

+SЕВЕRЕ SEPSIS ALERT

Negative
Future Directions

• Project impact and results

• Version 2 and beyond

Source: www.childrenshospitals.org
2017 Children’s Hospital Photo Exhibit
What’s next

• Continued cycles of improvement
• Adding to the model to further improve PPV
 – Risk of infection
 • History of chemo order, indwelling lines
 – Suspected infection
 • Microbial test or antimicrobial given
 – Changes in vital signs
What’s next

• Complete ED implementation and evaluate
 – Prospective study ongoing
 – Outcomes: missed cases, timeliness of interventions, ICU LOS, mortality

• Test and apply in other venues within the hospital
 – Different rules based on location
 • ICUs vs inpatient surgical vs medical or oncology
 – Different notification and suppression rules
Thank you

BCH Team
• Elliot Melendez, MD
• Marvin Harper, MD

EMR Team
• Jeff Christianson, PhD
• Abbey Logan, Strategist
• Justin Kimbrell, Sr. Strategist
Questions

• **Contact Info:**
 - matthew.eisenberg@childrens.harvard.edu
 - kate.madden@childrens.harvard.edu

• Please complete online session evaluation