AI vs COPD: The Fight for Patient Health

Session Number 54, February 12, 2019

Paul F. Simonelli, MD, Ph.D., Chair of Pulmonary and Critical Care Medicine and Director of Population Health, Geisinger Medicine Institute

John Showalter, MD, MSIS, Chief Product Officer, Jvion
Conflict of Interest

Paul F. Simonelli, MD, Ph.D
Has no real or apparent conflicts of interest to report.
Conflict of Interest

John Showalter, MD, MSIS
Salary: Jvion, Inc.
Royalty: Mastering Physician Engagement: A Practical Guide to Achieving Share Outcomes (Author)
Agenda

• Understanding the Challenges of Chronic Obstructive Pulmonary Disease (COPD)
• Defining an Artificial Intelligence (AI) Approach to COPD
• Overcoming Challenges to AI Adoption
• Applying AI to Drive Chronic Condition Management
• Q&A
Learning Objectives

• Differentiate between cognitive machine-driven AI and machine learning/predictive analytic models

• Identify the shortcomings of predictive analytic methods in reducing risk for COPD patients

• List the critical activities required to drive physician adoption of AI solutions

• Explain how AI can be applied to support chronic condition management—specifically for COPD patients and more broadly
Understanding the Challenges of COPD

AI vs COPD: The Fight for Patient Health
A Quick Overview of COPD

COPD impacts **30,000,000** people in the US

It is the **3rd** leading cause of death

COPD patients account for the highest rate of **avoidable inpatient stays** and the second highest rate of preventable ED visits

Understanding AECOPD

Acute exacerbations of COPD (AECOPD) are a leading cause of COPD patient deterioration

1. AECOPD-related costs are estimated to be around $4069/year per patient
2. Approximately 50% of AECOPD episodes are not reported by patients
3. AECOPD drives 2.4% of acute hospitalizations
4. Acute exacerbations have an overall mortality rate of 11.6%, which increases up to 37% in patients with repeat admissions
Defining an AI Approach to COPD

AI vs COPD: The Fight for Patient Health
The Persistent Problem with Predictive Analytics

Predictive solutions miss the patients who are at risk but fall outside of the narrow high-risk band.

Identifying and helping these patients drives business and quality impact.

Effective AI goes beyond the “known” at-risk individuals to more precisely and correctly identify at-risk patients across the population. This is especially important for an underreported diagnosis like AECOPD.
The Persistent Problem with Predictive Analytics

Predictive Analytics
- Static risk projections that stratify the easy to identify, known at-risk population
- Limited to a discrete set of use cases
- Most accurate at high-risk bands
- Assess risk in one dimension

Cognitive Machines
- Find the “hidden patients” missed by predictive analytics
- Deliver a complete view of the patient and population
- Focus on driving clinical impact
- Provide a longitudinal, multi-dimensional view of the patient that accounts for exogenous determinants of health

Known At-risk Population
73 year old male former smoker with a BMI of 19, multiple hospital admissions, history of intubation.

Impactable, At-risk Population
54 year old female current smoker with a BMI of 29, multiple acute clinic visits, confusion about when/how to use her inhalers, and financial concerns.
A Unique Approach to AI

Geisinger’s solution uses a complex mapping technique. Each individual is mapped into the cognitive machine. The machine can determine an individual’s proximity and trajectory toward or away from a clinically relevant cluster.

A patient’s trajectory is called a vector. With this information, Geisinger can determine:
- Who is at risk of an AECOPD episode within the next 30 days
- The clinical and non-clinical factors driving that risk
- And the most effective interventions to prevent an avoidable ER or inpatient stay
Overcoming Challenges to AI Adoption

AI vs COPD: The Fight for Patient Health
A Challenging Environment

Nearly half of primary care physicians (44%) say the primary value of their EHR is digital storage.

Almost ¾ of physicians report that EHR technologies contribute to burnout.

How Doctors Feel About Electronic Health Records
National Physician Poll by The Harris Poll: http://med.stanford.edu/content/dam/sm/ehr/documents/EHR-Poll-Presentation.pdf
A Challenging Environment

Increased demands are driving an estimated **20%** of unmet clinical need.

Source: Accenture analysis. Graph is not to scale and is illustrative.
Physician Engagement Maturity Model

<table>
<thead>
<tr>
<th>Data Driven</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>Stage 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>No data sharing</td>
<td>Data sharing</td>
<td>Information sharing</td>
<td>Knowledge sharing</td>
<td>Sharing actionable knowledge</td>
</tr>
<tr>
<td>Analytics</td>
<td>No analytics</td>
<td>Descriptive analytics – historic</td>
<td>Descriptive analytics – current</td>
<td>Predictive analytics</td>
<td>Prescriptive analytics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engagement</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>Stage 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>No communication</td>
<td>Intermittent communication</td>
<td>Routine communication</td>
<td>Active communication</td>
<td>Collaborative communication</td>
</tr>
<tr>
<td>Shared Outcomes</td>
<td>No shared outcomes</td>
<td>Shared vision of the problem</td>
<td>Shared vision of the problem and outcomes</td>
<td>Shared vision of the problem, outcome and indicators of success</td>
<td>Actively evaluating shared indicators of success</td>
</tr>
<tr>
<td>Metrics</td>
<td>No metrics</td>
<td>Reporting on non-shared metrics</td>
<td>Reporting shared metrics</td>
<td>Evaluating shared metrics – historic</td>
<td>Evaluating shared metrics – real time</td>
</tr>
</tbody>
</table>
Physician Engagement Maturity Model—AECOPD

<table>
<thead>
<tr>
<th>Data Driven</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>No data sharing</td>
<td>Data sharing</td>
<td>Information sharing (information about AECOPD)</td>
</tr>
<tr>
<td>Analytics</td>
<td>No analytics</td>
<td>Descriptive analytics – historic</td>
<td>Descriptive analytics – current (descriptive analytics about current and historic AECOPD rates)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engagement</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>No communication</td>
<td>Intermittent communication</td>
<td>Routine communication (setting the stage for AI adoption)</td>
</tr>
<tr>
<td>Shared Outcomes</td>
<td>No shared outcomes</td>
<td>Shared vision of the problem (COPD patients who have a preventable acute exacerbation)</td>
<td>Shared vision of the problem and outcomes (driving prevention to avoid the acute exacerbation)</td>
</tr>
<tr>
<td>Metrics</td>
<td>No metrics</td>
<td>Reporting on non-shared metrics</td>
<td>Reporting shared metrics (reporting on AECOPD instances)</td>
</tr>
</tbody>
</table>
Physician Engagement Maturity Model—AECOPD

<table>
<thead>
<tr>
<th>Data Driven</th>
<th>Stage 4</th>
<th>Stage 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Knowledge sharing (drivers for acute exacerbations)</td>
<td>Sharing actionable knowledge (Sharing most impactful process changes to lower rates of acute exacerbations)</td>
</tr>
<tr>
<td>Analytics</td>
<td>Predictive analytics (AECOPD predictions localized to the population)</td>
<td>Prescriptive analytics (AECOPD risk trajectories and patient-specific interventions)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engagement</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Communication</td>
<td>Active communication (project and implementation related communications)</td>
<td>Collaborative communication (obi-directional dialogue on AECOPD interventions and outcomes)</td>
</tr>
<tr>
<td>Shared Outcomes</td>
<td>Shared vision of the problem, outcome and indicators of success (success is measured by lowered rates of AECOPD episodes)</td>
<td>Actively evaluating shared indicators of success (ongoing communication of program ROI – clinical and operational)</td>
</tr>
<tr>
<td>Metrics</td>
<td>Evaluating shared metrics – historic (quarterly review of ongoing metrics)</td>
<td>Evaluating shared metrics – real time (availability of real-time metrics)</td>
</tr>
</tbody>
</table>
Applying AI to Drive Chronic Condition Management

AI vs COPD: The Fight for Patient Health
Geisinger’s Results

Identification of COPD patients who are at a 30x increased risk

50% reduction in avoidable admissions for COPD patients
Key Considerations for AI Success

• How to prove the value and potential impact of the solution on patients
• How to prove the value and potential impact of the solution on the organization
• If there are any clinical workflow adjustments needed to make the most out of an AI solution
• Who are the stakeholders best equipped to enable the realization of quick wins
• How to communicate the AI solution and successes
• How to leverage AI across the organization as a true asset
Other Areas of Potential AI Application

- Heart Failure
- Diabetes
- Asthma
- Bacterial Pneumonia
- UTIs
Questions

Paul F. Simonelli, MD, Ph.D., Chair of Pulmonary and Critical Care Medicine, System Director of Pulmonary and Sleep Medicine Institute, Director of Population Health, Geisinger Medicine Institute
pfsimonelli@geisinger.edu

John Showalter, MD, MSIS, Chief Product Officer, Jvion john.showalter@jvion.com

Please remember to complete your session evaluation